

Observations of the Nearby Sculptor Group Sd Galaxy NGC 7793 with the Chandra X-ray Observatory

Biswas Sharma Mentor Dr. Thomas G. Pannuti Department of Earth and Space Sciences Morehead State University

Outline

- Introduction
- Data Reduction
- Source Detection
- Results

Introduction

• NGC 7793

- Diameter9.2 arcmin• HI mass $9.1 \times 10^8 M_{\odot}$ Distance3.91 Megaparsecs• Inclination 50°
- High star formation rate: 0.24 $M_{\odot}yr^{-1}$

Data Reduction

- cxc.harvard.edu
- Raw level = 1 event file \rightarrow reprocessed level = 2 event file
 - chandra_repro flags bad pixels, applies gain, latest calibration, etc.
- Subtract background flares
 → get rid of high energy particle events in the detectors
- Merge observations

Obs ID	Exposure (ks)	Start Date	
13439	62.5	2011-12-25	
14231	60.5	2011-08-13	
14378	27.0	2011-12-30	
3954	50.0	2003-09-06	

Data Reduction

Raw image

Cleaned, merged image

Source Detection

- wavdetect tool
 - Wavelet-based source detection algorithm
 - » Mexican Hat wavelet
 - A local background is estimated around a putative source and a checking is done to see if the signal that is being seen in this pixel is significantly higher than expected
 - A hypothesis, that the observed signal can be obtained as a fluctuation from the background, is tested iteratively

Source Detection

Energy bands

- Broad band \rightarrow 0.5 keV 7 keV
- Soft band \rightarrow 0.5 keV 1.2 keV
- Hard band \rightarrow 1.2 keV 7 keV

C.f. Chandra sensitivity \rightarrow 0.1 keV – 10 keV

Source Detection

Hardness Ratio

 $\frac{H-S}{H+S}$

H = number of counts in hard band (1.2 - 7 keV)

- S = number of counts in soft band (0.5 1.2 keV)
- Positive hardness ratio ~ X-ray binary
- Negative hardness ratio ~ Supernova remnant

 44 X-ray sources in total from 190,220 s exposure time

c.f. 22 sources using 49,094 s exposure time in Pannuti et al. 2011

- 39 soft (magenta), 21 hard (blue) X-ray sources
- 15 sources that emit in both hard and soft bands

Dec(J2000.0)

the state			
SNR candidate	Hardness ratio	X-ray binary candidate	Hardness ratio
CXOU J235743.8-323635	0.11	CXOU J235752.8-323310	-0.53
CXOU J235746.8-323608	0.64	CXOU J235756.5-323559	-0.53
CXOU J235751.0-323727	0.98	CXOU J235802.9-323614	-0.37
CXOU J235754.8-323954	0.14	CXOU J235803.5-323644	-0.02
CXOU J235806.7-323757	0.93	CXOU J235807.8-323615	-0.01
CXOU J235808.4-323848	0.63	CXOU J235808.8-323404	-0.37
CXOU J235809.6-323616	0.11	CXOU J235810.5-32 <u>3359</u>	-0.25
CXOU J235811.4-323326	0.10		

• At least 2 variable sources using the tool 'glvary'

Declination

Right ascension

Future Work

- Check for more variable sources
- Obtain spectral fitting for some bright sources
- Compare with Spitzer data

References

Carignan, C. & Puche, D. 1990, AJ, 100, 394

Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185

Karachentsev, I. D., Grebel, E. K., Sharina, M. E., Dolphin, A. E., Geisler, D., Guhathakurta, P., Hodge, P. W., Karachentseva, V. E., Sarajedini, A., & Seltzer, P. 2003, A&A, 404, 93

Pannuti, T. G., Schlegel, E. M., & Filipović, M. D. et al. 2011, AJ, 142, 20

Pannuti, T. G., Schlegel, E. M. & Lacey, C. K., 2007, AJ, 133, 1361

Puche, D. & Carignan, C. 1988, AJ, 95, 1025

Tully, R. B. 1988, Nearby Galaxies Catalog (Cambridge Cambridge University Press)

Weisskopf, M. C., Brinkman, B., Canizares, C., Garmire, G., Murray, S. & van Speybroeck, L. P. 2002, PASP, 114, 1

Questions?

This slide intentionally left blank

Additional Slide 1

Additional Slide 2

- Chandra X-ray Observatory
 - Best angular resolution in X-ray: 0.492" per pixel
 - Front and back-illuminated detectors → spectroscopic as well as photometric analyses
 - Sophisticated data analysis framework → Chandra Interactive Analysis of Observations (CIAO) package
 - Datasets available in public domain

Additional Slide 3

- Why study nearby galaxies in X-ray?
 - − X-ray binaries (XRBs) and supernova remnants (SNRs) → stellar evolution
 - Observational difficulties in our own galaxy
 - Significant absorption along 5 degrees galactic line of sight
 - Considerable uncertainties in distances

 Broadening the sample by studying these objects in galaxies of diverse masses, metallicities, star formation histories and morphological types